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ABSTRACT: In recent years, neural networks have been
used as a tool for modeling an industrial process. An im-
provement in their performance may be expected either by
divining more efficient training algorithms or by intelli-
gently manipulating the data set. The second method is
examined. The problem chosen is one of predicting the
properties of cotton yarn from the fiber properties. When the

input data are known to correlate with each other, principal
component analysis can be used to improve the performance
of neural networks. © 2003 Wiley Periodicals, Inc. J Appl Polym
Sci 91: 1746–1751, 2004
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INTRODUCTION

Several research groups have shown neural net-
works as being quite successful in predicting yarn
properties from the fiber properties or process pa-
rameters. Ramesh et al.1 predicted the strength and
elongation of air-jet spun yarns from the yarn count,
percentage of polyester in a polyester– cotton blend,
and front and back nozzle pressures. Cheng and
Adams2 predicted the CSP (see Appendix A) of ring
yarns from the fiber properties measured in a high
volume instrument (HVI). Pynckels et al.3 tried to
predict a wide range of properties of ring and rotor
yarns from the fiber properties and machine param-
eters. Cabeco-Silva et al.4 predicted the tenacity and
elongation of carded cotton yarns using neural net-
works. In the case of cotton, a high correlation exists
between various properties, which is well known.
Finer cotton is usually longer, stronger, and con-
tains less extraneous materials (trash). Similarly, in
the case of synthetic fibers, the tenacity, modulus,
and elongation at break are usually correlated to
some extent. Therefore, we thought it worthwhile to
investigate whether this knowledge could be used
to develop neural networks that would be better at
predicting the yarn properties from the fiber prop-
erties that are known to be correlated.

EXPERIMENTAL

Study on ring spinning process

There are four major commercially viable technologies
in the world for spinning staple fibers, of which ring
spinning is the most popular. The data for the ring
spun cotton yarn used in this study were obtained
from a reputable industry source. They pertained to 20
distinct batches of fiber that were processed over a
period of 4 months and the corresponding yarn prop-
erties. The fibers were tested on an HVI to collect
information about the 2.5% span length, uniformity
ratio, fiber fineness, bundle strength, and trash con-
tent. In a spinning mill, these fibers are processed by a
series of machines that open, clean, separate, align,
and twist the fibers to form yarn. In the present work,
this entire series of machines has been simulated by a
single neural network. A feedforward neural network
was trained with five fiber properties and the yarn
count as input and six yarn properties as the output. A
single neural network (with six output units) was used
for predicting the yarn properties as depicted in Fig-
ure 1.

The terms used in Figure 1 are explained in Appen-
dix A. Out of the 20 data sets available, 14 were
randomly chosen for training the network and the
remaining 6 were used as the test set. The entire data
set was scaled to lie between �1 and �1. The hyper-
bolic tangent (tanh) was used as the activation func-
tion for all the units, and a backpropagation algorithm
was used for training. The network was stabilized by
10,000 cycles. The trained network was able to predict
the training set with almost 100% accuracy. The aver-
age errors on the test set are presented in Table I. Note
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that the lea strength, count strength product, coeffi-
cient of variance (CV) of the strength, and yarn un-
evenness are very well predicted whereas the total
imperfections per kilometer and CV of the yarn fine-
ness are not. The average error is 7.5%.

One way of reducing the error is to reduce the
complexity of the network by reducing the number of
inputs. Because cotton properties are known to be
correlated, an opportunity exists to reduce the number
of fiber properties that are used as input. Therefore,
we determined the correlation coefficients between
the properties of the fibers used in the study and the
results are shown in Table II.

The magnitudes of the correlation coefficients lie
between 0.73 and 0.98 (see Table II). Except for two of
them, all are greater than 0.8 in magnitude. Therefore,
it was presumed that using only one of these five
properties for the prediction of the six yarn properties
may cause an improvement in the network’s perfor-
mance. This was expected because the information

lost by neglecting the other four properties might be
more than offset by the reduction in network size and
the subsequent reduction in network complexity.

The choice of which fiber property to retain was
made by looking at the correlation coefficients first
and then with the knowledge about the HVI used for
measuring the fiber properties. From Table II it can be
seen that at least one correlation coefficient pertaining
to the uniformity ratio, fiber fineness, and bundle
strength is less than or equal to 0.8. Only the 2.5% span
length and trash content have correlation coefficients
above 0.8 with all the other properties in this case.
Thus, our choice narrows down to a 2.5% span length
and the trash content. It is also known that the HVI
measures the trash content by optically scanning the
surface of a fiber tuft and comparing the image with
previously stored standard images from its database.
This is an indirect method of measuring trash. The
differences between these results and those obtained
by the standard gravimetric method (i.e., by a Shirley
Analyzer) are to be expected. On the other hand, an
HVI measures the 2.5% span length by holding a
fringe of fibers randomly and scanning it from one
end to the other for the number of fibers. This comes
quite close to the accepted method for measuring the
span length. In the light of this discussion, the 2.5%
span length was selected as the fiber property to be
used to carry out the following exercise.

A feedforward neural network was trained with the
same 14 data sets used earlier but using only the 2.5%
span length and yarn count as inputs. The outputs
were kept the same. The structure of the network is
depicted in Figure 2.

Figure 1 The structure of the network for predicting the
properties of ring yarn.

TABLE I
Average Error Percentages of Test Set for Predicting

Properties of Ring Spun Cotton Yarn

Predicted property Error (%)

Lea strength 3.9
Count strength product 2.7
CV of yarn fineness 19.1
CV of strength 3.4
Yarn unevenness (CV) 2.4
Total imperfections/km 13.6
Average 7.5

The data are from industry.

TABLE II
Correlation Coefficients Among Properties of Fibers Used for Ring Spinning

2.5% Span
length

Uniformity
ratio

Fiber
fineness

Bundle
strength

Trash
content

2.5% Span length 1 0.87 �0.84 0.94 �0.93
Uniformity ratio 0.87 1 �0.73 0.80 �0.82
Fiber fineness �0.84 �0.73 1 �0.91 0.93
Bundle strength 0.93 0.80 �0.91 1 �0.98
Trash content �0.93 �0.82 0.93 �0.98 1

Figure 2 The structure of the truncated network for pre-
dicting the properties of the ring.
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The training set error was almost zero. The errors of
the test set (which was maintained as in the earlier
exercise) are shown in Table III.

It can be seen from Table III that the prediction of
the yarn properties, except the lea strength, deterio-
rated for the network with two inputs. In most of the
cases, the deterioration was quite small except for the
CV of the strength and total imperfections per kilome-
ter. Nevertheless, the overall performance deterio-
rated from an error value of 7.5% to one of 9.2%.

These results show that reducing the number of
inputs did not cause an improvement in the perfor-
mance of a neural network, in spite of the fact that the
inputs were highly correlated. This indicated that re-
moval of the four fiber properties was resulting in a
significant loss of information. It was therefore neces-
sary to look for ways in which the inputs could be
reduced (thereby reducing network complexity) with-
out losing a significant amount of information. Prin-
cipal component analysis provides a way of achieving
this.

RESULTS AND DISCUSSION

Principal component analysis

The theory behind the development of principal com-
ponent analysis can be found in many works.5,6 Its
goal is to transform a set of variables Xi (i � 1, 2, . . . ,
k) into a new set of variables (Pi) called principal
components, which are linear combinations of the Xs.
These combinations are chosen so that the principal
components satisfy two conditions.

1. the principal components are orthogonal to each
other; and

2. the first principal component accounts for the
highest proportion of total variation in the set of
all Xs, the second principal component accounts
for the second highest proportion, and so on.

Figure 3 shows a two-dimensional data set (plotted
in the X1–X2 plane) that forms two clusters. The dis-

tribution of the data along the axes is also shown.
Neither of these two axes can be termed more impor-
tant than the other for describing the data. The prin-
cipal components P1 and P2 can be drawn in such a
way that the highest variation of the data occurs along
P1 (first principal component) and the next highest
variance (in this case the lowest) occurs along P2 (sec-
ond principal component). It is now obvious that P1 is
more important for describing the data than P2.
In the current problem, this technique needs to be
applied to five-dimensional data. Once the relative
importance of the five principal components is known,
the least important components can be neglected.
Now the projection of the data along the most impor-
tant principal components will give a truncated data
set with the least amount of information being lost.
The steps involved in deriving the principal compo-
nents from a data set are stated in Appendix B.

Application of principal component analysis

Using the procedure described in Appendix B, the
principal components of the data set consisting of the
five fiber properties were evaluated. The eigenvectors
were the columns of the following matrix:

�
0.8636 0.1023 0.2319 � 0.2908 � 0.3246

� 0.2733 � 0.1350 � 0.3843 � 0.8118 � 0.3169
� 0.2149 0.1788 0.7267 � 0.4656 0.4207
� 0.2058 � 0.6421 0.4962 0.1468 � 0.5269
0.3016 � 0.7260 � 0.1558 � 0.1345 0.5827

�
The corresponding eigenvalues were

�0.2602 0.1188 0.6961 1.5000 31.2348�

The projections of the original data on the eigenvec-
tors resulted in the five fiber properties being trans-

TABLE III
Comparison of Error Percentages of Test Set of

Networks with 6 and 2 Inputs

Predicted property

Error (%) of networks with

6 Inputs 2 Inputs

Lea strength 3.9 3.4
Count strength product 2.7 4.0
CV of yarn fineness 19.1 20.0
CV of strength 3.4 7.8
Yarn unevenness 2.4 3.4
Total imperfections/km 13.6 16.6
Average 7.5 9.2

Figure 3 The principal components.
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posed to another set of five properties that were or-
thogonal to each other. A neural network was created
with the orthogonalized data as input. Next, by study-
ing the eigenvalues, it was decided to retain only the
first two principal components. The orthogonalized
and truncated data (along with the yarn count) were
also used to train a neural network for predicting the
yarn properties. The errors of the test set compared
with similar results for the network trained with the
original values are shown in Table IV.

It can be observed that orthogonalization without
any reduction of the input parameters did not cause
any change in the overall performance of the network
whereas orthogonalization with the reduction caused
a slight improvement. Compared to the original six-
input network, the three-input network gives lower
prediction errors for four out of the six yarn proper-
ties. Of these, the improvements in the prediction of
total imperfections per kilometer (13.6–3.5%) and lea
strength (3.9–2.5%) are quite significant but those of
the CSP and unevenness are marginal. The average
error of all the properties improved from 7.5 to 7.1%.

This exercise indicated that the use of principal
component analysis to orthogonalize and truncate a
data set may allow the neural network’s performance
to improve. A reduction in the network size led to a
reduction of the network complexity. Orthogonaliza-
tion ensured the identification of the least important
factors in the data and their subsequent removal. The
end product was a smaller network with almost the
same information content as the original network, and
this led to an improvement of its performance.

Rotor spinning process

Rotor spinning technology is the second most popular
staple fiber spinning technology in the world. Data
pertaining to rotor yarns were obtained from industry,
and they were used for conducting a similar exercise.
In the original network, five fiber properties and the
yarn count were used as inputs to a feedforward
neural network to predict the six yarn properties (sim-

ilar to the exercise carried out on the ring yarn data).
Out of the 111 data sets available, 78 randomly chosen
examples were taken as the training set and the re-
maining 33 were used as the test set. The errors of the
trained network in the test set are shown in Table V.

It can be seen from the table that the lea strength,
CSP, and unevenness (CV) are predicted very well
whereas the CV of the strength, the CV of the count,
and the total imperfections are very badly predicted.
The average error is 17.4%.

Principal component analysis was carried out on the
five fiber properties following the method described in
Appendix B. The eigenvectors were the columns of the
following matrix:

�
0.0514 0.3264 0.3272 � 0.5913 � 0.6589
0.3443 � 0.8886 0.0131 � 0.2024 � 0.2253

� 0.8698 � 0.2769 � 0.0733 0.1474 � 0.3737
0.3309 0.1017 0.0634 0.7476 � 0.5632

� 0.1129 � 0.1297 0.9399 0.1697 0.2413
�

The corresponding eigenvalues were

�8.6777 12.9608 5.0479 2.4215 41.1866�

The projections of the original data on the eigenvec-
tors resulted in the five fiber properties being trans-
posed to another set of five properties that were or-
thogonal to each other. These orthogonalized data
(along with the yarn count) were used to train a neural

TABLE IV
Comparison of Test Set Errors of Networks Trained with Original, Orthogonalized,

and Orthogonalized Truncated Data

Predicted property

Error (%) of network with

Original
complete data

Orthogonalized
complete data

Orthogonalized
truncated data

Lea Strength 3.9 4.1 2.5
Count Strength Product 2.7 2.5 2.3
CV of yarn fineness 19.1 19.6 24.4
CV of Strength 3.4 3.1 7.8
Yarn unevenness 2.4 2.7 2.2
Total imperfections/km 13.6 13.0 3.5
Average 7.5 7.5 7.1

TABLE V
Errors of Test Sets for Rotor Yarn Data

Yarn properties Average error (%)

Lea strength 2.8
Count strength product 3.0
CV of yarn fineness 26.1
CV of strength 19.2
Yarn unevenness 3.1
Total imperfections/km 50.2
Average 17.4
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network for predicting the yarn properties. Next, a
reduction of the least important orthogonalized com-
ponents was attempted, as was done for the ring yarn
data. Unfortunately, in this case, the network could
not be trained at all. The training set errors were too
high (25% average error) to conclude that proper
training had been done. The training curves for the
three types of rotor yarn data (original, orthogonal-
ized, and orthogonalized and truncated) are shown in
Figure 4.

The reason for the inability of the network to learn
the orthogonalized and truncated data could be found
in the correlation coefficients among the properties of
the fiber used to spin the rotor yarns. These are shown
in Table VI.

It can be seen that the correlation between the fiber
properties is much weaker for the fibers used to spin
rotor yarns than those used to spin ring yarns. In this
case, except for one value, all the correlation coeffi-
cients are lower than or equal to 0.5 whereas for the
ring yarn data, except for two, all were greater than
0.8. The low correlation coefficients could be attribut-
able to the practice of adding an unspecified amount
of soft waste from other mixings while spinning rotor
yarns. Because of the low degree of correlation among
the fiber properties, none of the orthogonalized com-

ponents had an eigenvalue too low to be ignored. This
is also reflected in the spread (ratio of largest to small-
est) of the eigenvalues for ring and rotor yarn data.
The spread of eigenvalues for the ring yarn data was
263 while that of the rotor yarn data was only 17. As a
result, even the least important dimension in the or-
thogonalized rotor yarn data contained too much in-
formation to be ignored.

The errors in the test set of the orthogonalized (but
not truncated) data compared with similar results for
the network trained with the original values are
shown in Table VII.It can be seen that the network
with orthogonalized data as input gave lower predic-
tion errors for all the yarn properties except CSP. In
particular, for total imperfections per kilometer, the
network with orthogonalized inputs gave a much
lower error compared to the network with original
data as input. The average error for all the yarn prop-
erties improved from 17.4 to 14.7%.

CONCLUSION

This study explored the possibility of improving the
performance of neural networks. The following pre-
sumption was found to be incorrect: cutting down the
number of inputs to a network, based on the strength
of the correlation coefficients, would lead to better
network performance because of a reduction in net-
work complexity.

Figure 4 The training curves for three types of data for
rotor yarn.

TABLE VI
Correlation Coefficients Among Properties of Fibers Used to Spin Rotor Yarn

2.5% Span
length

Uniformity
ratio

Fiber
fineness

Bundle
strength

Trash
content

2.5% Span length 1 0.17 0.50 0.83 �0.48
Uniformity ratio 0.17 1 0.30 0.32 �0.11
Fiber fineness 0.50 0.30 1 0.42 �0.27
Bundle strength 0.83 0.32 0.42 1 �0.52
Trash content �0.48 �0.11 �0.27 �0.52 1

TABLE VII
Comparison of Error Percentages of Test Set for

Predicting Rotor Yarn Properties

Predicted property

Error (%) of networks with

Original
inputs

Orthogonalized
inputs

Lea strength 2.8 2.7
Count strength product 3.0 3.2
CV of count 26.1 24.6
CV of strength 19.2 16.7
Unevenness (CV) 3.1 2.8
Total imperfections/km 50.2 38.0
Average 17.4 14.7
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The improvement in the performance of neural net-
works was made possible by orthogonalizing the in-
put data with the help of principal component analy-
sis.

When the correlation between inputs was high, a
reduction of the least important orthogonalized com-
ponents could bring about a further improvement in
the network’s performance.

APPENDIX A

2.5% span length: the length above which 2.5% of the
fibers lie when caught in a random manner

50% span length: the length above which 50% of the
fibers lie when caught in a random manner

Bundle strength: the strength of a bundle of fibers
held by two jaws at a distance of 1/8 in.

CSP: the product of the lea strength (lb) and yarn
fineness in the English Cotton Count (number of
strands in 120 yards of yarn that weigh 1 lb), which is
useful for comparing the strengths of yarns of differ-
ent finenesses

Imperfections/kilometer: the number of thin places,
thick places, and neps present in every kilometer of
yarn

Lea strength: a skein of 120 yards (consisting of 80
loops of yarn) is stretched to the breaking point and
the force required is noted

Nep: an abnormal thick region in the yarn that
contains 200% more mass than the average yarn for
ring yarns (280% for rotor yarn) and has a length of
less than 1 mm

Thin place: a region in the yarn that contains 50%
less mass than the average yarn mass

Thick place: a region in the yarn that contains 50%
more mass than the average yarn mass

Uniformity ratio: the ratio of the 50% span length
and 2.5% span length (%)

Yarn unevenness: the CV of the weight of 8-mm
pieces of yarn (obtained by passing 1 km of yarn
between two parallel capacitor plates and noting the
continuous change in capacitance)

APPENDIX B

Given a set of data, the principal components are the
eigenvectors of the covariance matrix sorted in the
decreasing order of the corresponding eigenvalues

(i.e., the first principal component is the eigenvector
corresponding to the largest eigenvalue). Let the data
be arranged in the form of a matrix with m rows and
n columns, where the rows indicate the samples and
the columns indicate the properties. The following
steps need to be performed to extract the principal
components from the data.

Step 1: The data are first converted to a set of values
with zero mean by subtracting the average of each
column from each of the values of the column. Let any
row of this zero-mean matrix be given by

y1 y2 · · · yn

Step 2: The correlation matrix corresponding to this
row must be calculated as follows:

�
�y1�

2 �y1 y2� · · · �y1yn�

�y2 y1� �y2�
2 · · · �y2 yn�···

···
···

�yny1� �yn y2 · · · (yn)2
�

Step 3: The correlation matrices for all the m rows
must be evaluated.

Step 4: All the correlation matrices obtained in step
3 must be added to attain the final correlation matrix.

Step 5: The eigenvalues and eigenvectors of this
correlation matrix should be calculated. The eigenvec-
tors are the principal components and the eigenvalues
give their relative importance.

Step 6: The projection of the original matrix onto the
principal components gives an orthogonalized data
set of n dimensions. The relative importance of each
dimension is given by the corresponding eigenvalue.
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